
Civilizing Exploitation of Communication Clouds 
 

Janga Santhosh, Puram Pradeep kumar, Majoju Sridhar kumar 
 

Computer science and Eng. Department,  
JNT University,Karimnagar,  

Andhra Pradesh, India  
 
 
Abstract— the advantage of infrastructure -as-a-Service (IaaS) 
clouds is providing users on-demand access to resources.  to 
provide on-demand access, cloud providers must either 
significantly overprovision their communication or reject a 
large proportion of user requests (in which case the access is 
no longer on-demand). At the same time, not all users require 
truly on-demand access to resources. Many applications and 
workflows are designed for recoverable systems where 
interruptions in service are expected. For instance, many 
scientists utilize High Throughput Computing (HTC)-enabled 
resources, such as Condor, where jobs are dispatched to 
available resources and terminated when the resource is no 
longer available. We propose a cloud communication that 
combines on-demand allocation of resources with 
opportunistic provisioning of cycles from idle cloud nodes to 
other processes by deploying backfill Virtual Machines (VMs). 
We demonstrate that a shared communication between IaaS 
cloud providers and an HTC job management system can be 
highly beneficial to both the IaaS cloud provider and HTC 
users by increasing the exploitation of the cloud 
communication  and contributing cycles that would otherwise 
be idle to processing HTC jobs.  
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I. INTRODUCTION 
 

In the current years, Infrastructure-as-a-Service (IaaS) cloud 
computing has emerged as an attractive alternative to the 
acquisition and management of physical resources. The on 
demand provisioning it supports allows users to elastically 
expand and contract the resource base available to them 
based on an immediate need – a pattern that enables a quick 
turnaround time when dealing with emergencies, working 
towards deadlines, or growing an institutional resource base. 
This pattern makes it convenient for institutions to 
configure private clouds that allow their users a seamless or 
near seamless transition to community or commercial 
clouds supporting compatible VM images and cloud 
interfaces. Such private clouds are typically configured 
using open source IaaS implementations such as Nimbus or 
Eucalyptus. However, such private cloud installations also 
face a exploitation problem. In order to ensure on-demand 
availability a provider needs to overprovision: keep a large 
proportion of nodes idle so that they can be used to satisfy 
an on-demand request, which could come at any time. The 
need to keep all these nodes idle leads to low exploitation. 
The only way to improve it is to keep fewer nodes idle. But 
this means potentially rejecting a higher proportion of 
requests – to a point at which a provider no longer provides 
on-demand computing. This situation is particularly hard to 
accept in the world of scientific computing where the use of 

batch schedulers typically ensures high exploitation and 
thus much better resource amortization. Thus, potential low 
exploitation constitutes a significant potential obstacle to 
the adoption of cloud computing in the scientific world. At 
the same time, while the on-demand capabilities of IaaS  
clouds are ideal for many scientific use cases, there are 
others that do not necessarily require on-demand access to 
resources. Many systems, specifically volunteer computing 
systems such as SETI@Home  and Folding@Home , are 
capable of taking advantage of resources available 
opportunistically and are also preemptible, i.e., designed as 
failure resilient systems where interruptions in service can 
be handled without compromising the integrity of 
computation. One example in the scientific community is 
the use of high throughput computing (HTC), as 
implemented by e.g., the Condor system where users 
employ HTC-enabled resources to process their workloads. 
These applications are designed to “scavenge”unused 
resource cycles: for example, when a user stops using their 
desktop, the screensaver might use the resource to run a 
volunteer computing program. The job may then be pre-
empted when the resource becomes unavailable (i.e., the 
user is using it again), in which case the job is typically 
requeued and rescheduled on another available resource by 
the HTC system that manages it. We propose a cloud 
communication that combines ondemand allocation of 
resources with opportunistic provisioning of cycles from 
idle cloud nodes to other processes, such as HTC, by 
deploying backfill VMs. Backfill VMs are deployed on idle 
cloud nodes and can be configured to perform any desired 
function. A backfill VM is terminated when the resource is 
needed to satisfy an on-demand request. If we can ensure 
that the computation occurring in backfill VMs is resilient 
to such sudden termination, the time that would otherwise 
be idle can be profitably spent. Furthermore, cycles via 
backfill VMs can be provided to users at a lower cost than 
on-demand VMs because of the cloud providers ability to 
terminate the instances when needed, thus for users that 
work with HTC resources and possibly expect such 
behavior already, backfill VMs would provide a less 
expensive option when moving their workloads to the cloud. 
Overall, this design achieves two goals: for cloud providers, 
it offers a path to higher utilized clouds; for cloud users, it 
offers another type of resource lease, potentially cheaper 
than on-demand, non preemptible resource. In our work we 
extend the Nimbus toolkit  to deploy backfill VMs on idle 
Virtual Machine Monitor (VMM) nodes . 
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 Nimbus is an open source toolkit for deploying IaaS clouds, 
designed with extensibility in mind, which makes it 
particularly suitable for projects such as the one described 
here. To illustrate how the system works, we configure the 
backfill VMs as Condor workers that integrate with a 
Condor pool to process HTC jobs. We evaluate the ability 
of the system to increase exploitation of the IaaS cloud 
communication without sacrificing the ability of the IaaS 
cloud to provision resources on-demand. We also evaluate 
the ability of the system to contribute cycles that would 
otherwise be idle to processing HTC jobs. We find that 
during certain portions of our experimental evaluation 
backfill VMs contribute to an increase in the exploitation of 
the IaaS cloud communication from 37.5% to 100% with 
only 6.39% overhead cost for processing the HTC workload. 
Additionally, backfill VMs process the entire Condor 
workload using what would have otherwise been idle cycles. 
The remainder of the paper is organized as follows.  

 
II. MOVE TOWARDS 

A compute communication cloud operates by allowing a 
user to make leases against its pool of resources; an  
ommunication lease makes a resource available to the user 
based on set of lease terms defining the availability, 
capacity and general conditions of a lease. In our system we 
focus on investigating two types of leases:� On-demand, 
non-preemptible and flexible leases give a user access to a 
resource within interactive time of making the request and 
make the resource available for an agreed-upon period of 
time. The user can deploy any VM compatible with the 
system. � Opportunistic, preemptible and pre-set leases 
give a user access to a resource at an indeterminate time and 
make the resource available to the user for an indeterminate 
amount of time. Further, this resource is pre-defined for the 
user by the cloud administrator, i.e.the user cannot provide 
his or her own VM. In the rest of the paper we will be 
referring to them as ondemand leases and preemptible 
leases respectively. We define the following roles in our 
system. An on-demand user is a user that requests on-
demand VMs/leases from an IaaS cloud. An on-demand 
VM is an IaaS VM that has been provisioned via on on-

demand lease for a specific user. A backfill VM is a VM 
that has been deployed automatically by the IaaS cloud 
manager on an idle IaaS node using a preemptible lease. An 
IaaS cloud  dministrator is the person or persons 
responsible for configuring and managing the IaaS cloud 
resource. An HTC user is a user that submits jobs to an 
HTC queue and an HTC worker is a system that process 
jobs from the HTC queue. In the context of IaaS clouds, 
backfill VMs are generic VMs deployed on IaaS resources 
using a preemptible lease that may be configured to 
perform any function. Backfill VMs have two major 
constraints. First, backfill VMs may be terminated suddenly 
in order to free up space for the IaaS cloud manager to 
service an on-demand lease. Second, because of the 
unpredictable timing of on-demand leases (from any 
number of unique users), a variable number of backfill VMs 
may be available at any given time. Thus, we assume that 
applications executing inside backfill VMs are designed to 
handle environments that contain a variable number of 
workers that may join or leave the system at any time. 
Certain applications are not well suited for these volatile 
environments, for example, parallel applications that 
require all processes to be present for the duration of the 
application’s execution and lack checkpoint/restart 
capabilities. An example of a system that is well-suited for 
backfill VMs are High Throughput Computing (HTC) 
workloads . HTC workloads typically consist of a large 
number of jobs that eventually need to be processed. An 
assumption of HTC workloads is that they do not have an 
immediate deadline and therefore do not need resources to 
be available at a particular time. In addition, terminating  
individual HTC jobs in the  middle of execution and 
requeuing them for later execution is an acceptable action 
as long as the system is eventually able to process the 
workload.  This work further assumes that backfill VM 
images and deployments are managed by the IaaS cloud 
administrator; backfill VMs are not directly managed by 
remote cloud users. This work also assumes that the HTC 
scheduler is not aware of the IaaS cloud scheduler details 
and vice versa. Thus, the scheduling of HTC jobs on HTC 
workers (in backfill VMs) is separate from the launching 
and terminating of user VMs on the IaaS cloud. 
A. Architecture 
Figure 1 is a simple example deployment consisting of an 
IaaS Nimbus cloud using backfill VMs to run Condor HTC 
jobs in order to increase cloud communication exploitation. 
In this example the HTC user submits 3 individual tasks to 
the Condor master, which is able to schedule 1 task 
immediately on a local worker. However, because the 
remaining resources in site B’s Condor pool are busy, 
Condor leverages the cycles provided by site A’s backfill 
VMs to launch the other 2 tasks immediately. Condor is an 
ideal candidate for such a deployment because of its 
original design as a cycle-scavenger where idle desktop 
machines execute jobs until the system’s user returns, after 
which the job is either migrated to another system or 
prematurely terminated and re-launched on another system. 
A backfill deployment could be much more complex then 
the example depicted in Figure 1. For instance, backfill 
VMs could host a number of different backfill processes in 
addition to Condor workers. The Condor workers could 
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also be configured to execute jobs from multiple Condor 
pools or sites instead of a single pool, as shown in the 
figure. IaaS cloud administrators must consider a variety of 
different backfill configurations when deploying a backfill 
solution on an IaaS cloud. The configuration is influenced 
by the characteristics of the underlying physical IaaS 
resources, the users of on-demand leases, and the users of 
preemptible leases. First, appropriate backfill applications 
and workflows should be identified. These applications 
should accommodate the constraints discussed previously, 
namely, they should be able to utilize a variable number of 
nodes that may join or leave the system at any time. Second, 
if the IaaS Virtual Machine Monitor (VMM) nodes have 
multiple cores, the IaaS cloud administrator must determine 
the granularity with which to deploy backfill VMs. One 
possible solution is to deploy a single backfill VM for each 
core on a VMM node. This approach allows the IaaS cloud 
manager to have fine-grained control over VM deployment. 
For example, a node with 8 cores may be comprised of 3 
user VMs and 5 backfill VMs. However, the disadvantage 
of this approach is the increased overhead introduced by 
running additional VMs. An alternative solution is to 
deploy a single backfill VM per VMM node, utilizing all  of 
the available cores in the backfill VM. This approach 
reduces the virtualization overhead on the VMM node since 
only a single backfill VM would be running, however, if the 
cloud receives an on-demand user request for a single core 
it is possible that the entire backfill VM will need to be 
terminated to satisfy the on-demand request. This would 
leave the additional VMM cores idle. Alternatively, the 
administrator may wish to configure VM deployments 
based on allocation of other resources, such as RAM, 
instead of (or in addition to) CPU cores. Third, the IaaS 
cloud administrator must determine the approximate size of 
the backfill deployment, relative to the size of the IaaS 
cloud. The administrator may allow the backfill deployment 
to utilize all available nodes, however, the administrator 
should consider the additional overhead required to 
terminate backfill nodes in order to fulfill on-demand user 
requests. Depending on the method used to terminate 
backfill VMs (e.g. immediately trash the VM or cleanly 
shut it down) and the number of backfill nodes being 
terminated, this overhead may be significant.  Consequently, 
IaaS cloud administrators may configure backfill 
deployments to only utilize a percentage of idle nodes or 
never allow backfill deployments exceed a preset and static 
number of idle nodes. Finally, the IaaS cloud administrator 
must determine the backfill VM image deployment method. 
A fresh backfill VM image could potentially be transferred 
from the VM image repository for every backfill VM 
deployment (this process is referred to as VM image 
propagation and is a typical pattern that remote users expect 
for their deployments); however, this introduces network 
contention and may slow the deployment of on-demand 
user VMs. Another solution is to propagate the backfill 
image to the node and cache it on the node, only 
propagating it again if the image is updated or is removed 
from the cache on the node. A third and simple solution is 
to manually place the backfill image on each VMM node. 
Thus, when a backfill VM boots, the image is already on 
the VMM node and doesn’t require an image to be copied. 

This approach reduces network contention (since it is only 
performed at select times) and reduces launch time for the 
VM (since the backfill image doesn’t need to be copied 
across the network). However, any changes to the backfill 
image require that the IaaS cloud administrator push it out 
to all VMM nodes. 
 B. Backfill Termination Policies Backfill VMs are 
deployed on idle VMM nodes and terminated whenever 
space is needed to service an on-demand lease. However, 
the specific backfill VMs that are selected for termination 
may impact the services, applications, or workflows 
executing inside those VMs. For this reason, ideally the 
backfill VM termination policies should consider the 
applications and services running inside those VMs as well 
as generic factors such as the need for clean shutdown, the 
ability of an application to  checkpoint/restart, etc. We 
discuss below two simple policies that do not integrate such 
hints and highlight their shortcomings. One simple policy is 
to select the backfill VMs to terminate at random. This 
approach ignores a number of factors that could impact the 
services and applications running inside backfill VMs. In 
particular, if the random backfill VM selected for 
termination is the only backfill VM performing a useful 
task then its work may be lost while idle backfill VMs 
continue running. Another policy is to select the backfill 
VM that has been running for the least amount of time. This 
policy makes the assumption that the backfill VMs running 
the longest also run long-running jobs that have performed 
the most work and therefore will lose the most work when 
terminated. The intuition behind this policy is that a 
workload consisting entirely of short running jobs (e.g. less 
then a few minutes) will only be slightly impacted by the 
termination of any backfill VM however, workloads that 
consist of long running jobs (or a combination of long and 
short jobs) will be impacted more by the termination of a 
VM that has been deployed for an extended period of time. 
In this case all of the VM's work will be lost unless the 
application supports checkpoint/restart or migration. It is, 
however, possible that the backfill VM running the longest 
will not always be the backfill VM with the most work to 
lose; without tighter integration between the HTC job 
manager and backfill termination policy this information is 
not readily accessible. More advanced backfill termination 
policies will require “hints” from the IaaS scheduler in the  
form of a more complete picture of cloud VM placement or 
integration with the applications and services running inside 
of the backfill VMs. For instance, if the backfill termination 
policy is aware of VM placement on individual VMM 
nodes, it may be able to select the fewest number of backfill 
VMs for termination in order to satisfy an on-demand lease 
instead of blindly terminating backfill VM’s until the 
request can be fulfilled. Alternatively, if the backfill 
termination policy integrates with the applications and 
services running inside of backfill VMs then it may be able 
to identify which backfill VMs are performing useful tasks 
and avoid terminating those VMs. 

 
III. IMPLEMENTATION 

We extend the open source Nimbus cloud computing toolkit, 
which provides on-demand access to resources (in the form 
of VMs), to support the deployment of preemptible leases 
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on idle cloud nodes, also referred to as backfill. We make a 
number of simplifying assumptions in our current 
implementation. First, the Nimbus administrator must 
configure backfill. On-demand cloud users cannot elect to 
deploy backfill VMs. Second, the current implementation is 
capable of using only a single backfill VM image per VMM 
node. Different backfill VM images could be deployed on 
different VMM nodes, allowing multiple backfill VM 
images to operate within the same IaaS cloud, each 
performing different functions. Unless the user specifies the 
max number of backfill instances, backfill automatically 
attempts to deploy as many backfill VMs as possible when 
it is enabled. Initially, we support two termination policies 
for selecting backfill VMs for termination in order to fulfill 
an on-demand lease. The first policy simply selects a 
random backfill VM. The second policy, and the default, 
terminates the most recently deployed backfill VM in an 
attempt to minimize the amount of work “lost” by the 
premature termination of backfill VMs. In future work we 
hope to add additional backfill termination policies. Finally, 
our backfill implementation cleanly shuts down the backfill 
VM. Clean shutdown requires additional time over trashing 
the VM, however, performing a clean shutdown notifies 
services and applications running inside the backfill VM 
that the VM will be terminated, allowing them to respond 
appropriately (e.g. notify a central manager to reschedule 
currently running jobs).  
A. Backfill Configuration Options Only the Nimbus cloud 

administrator can configure Backfill. The main 
configuration options are specified in a backfill.conf file 
on the Nimbus service node, allowing administrators to 
easily configure and deploy backfill VMs on Nimbus 
clouds. The backfill.conf options include:  

� Backfill.disabled: This option specifies whether backfill 
is enabled or disabled for the specific cloud. The      
default is disabled.  

� Max.instances: This option specifies the maximum 
number    of backfill VMs to launch (assuming there 
are enough idle    nodes). The default, 0, launches as 
many as possible.  

� Disk.image: This option specifies the full path to the 
backfill VM image on the VMM nodes. This option 
assumes that the backfill VM image has already been 
pushed out to the VMM node, the Nimbus service does 
not automatically transfer it. The image must be in the 
same location on every VMM node.  

� Memory.MB: This option specifies the amount of 
memory (RAM) to use for backfill VMs. The default is 
64 MB.  

� VCPUs: This option specifies the number of VCPUs to 
use for backfill VMs. The default is 1.  

� Duration.seconds: This option specifies the amount of 
time (in seconds) backfill VMs should run before being 
terminated (currently Nimbus doesn’t support 
“infinite” length VM deployments). The default is one 
week. 

� Termination.policy: This option specifies the termination 
policy to use when terminating backfill VMs. The 
policies currently supported include a “most recent” 
policy that first terminates backfill VMs running for the 
least amount of time and an “any” policy that simply 

terminates a random backfill VM. The default is the 
most recent policy.  

� Retry.period: This option specifies the duration (in 
seconds) that the backfill timer waits in between 
attempts to deploy backfill VMs on idle VMM nodes. 
The default is 300 seconds.  

� Network: This option allows the IaaS cloud administrator 
to specify whether the backfill VMs should use the 
public network or private. 

 
B. Extensions to the Nimbus Workspace Service We 
modified the Nimbus workspace service to support backfill 
VM deployments. The workspace service is responsible for 
managing the VMM nodes and servicing ondemand user 
requests for VMs. In particular, we added a backfill Java 
class that contains the majority of the backfill 
implementation code. The backfill configuration file is read 
when the Nimbus workspace service is started; if backfill is 
enabled then the service attempts to launch backfill VMs 
untilthe request for resources is denied or the maximum 
number of backfill instances is reached (as specified in 
backfill.conf). The service also starts a backfill timer that 
continually loops, sleeping for the duration specified by 
duration.seconds in backfill.conf, and attempts to launch 
backfill VMs when it wakes (until the request for resources 
is denied or the maximum number of backfill instances 
have been launched). 
As part of our modifications to the Nimbus workspace 
service, we also modified its scheduler to detect any 
rejected requests for on-demand user VMs. If we detect a 
rejected ondemand user request and backfill is enabled, we 
attempt to terminate the appropriate number of backfill 
VMs so that the user request can be fulfilled. After the 
backfill VMs are terminated we attempt to service the user 
request again. If we are not able to service the request, we 
continue terminating backfill VMs until we are able to 
service the request or all backfill VMs are terminated. If all 
backfill VMs are terminated and we are still unable to 
service the request, then the request is rejected. We also 
modified the scheduler to detect when ondemand users are 
terminating VMs. In this case backfill attempts to re-launch 
backfill VMs (if backfill is enabled) without waiting for the 
backfill timer to expire. In general this is an acceptable 
approach, however, there is a design flaw in this initial 
implementation. It is possible that all backfill VMs could be 
terminated and yet the on-demand request could still be 
rejected. In this case the ideal solution would be to 
recognize, upfront, that the IaaS cloud is unable to fulfill 
the on-demand request and, therefore, the on-demand 
request should be rejected immediately before terminating 
any backfill VMs. However, recognizing this upfront 
requires a complete picture of the VM placement and the 
location of individual VM deployments on VMM nodes.  
 

IV. EVALUATION 
Our evaluation examines an IaaS backfill deployment from 
two perspectives. First, we consider the ability of the 
system to increase exploitation of the IaaS cloud 
communication without sacrificing the ability of the cloud 
to provision resources ondemand.  Second, we consider the 
ability of the system to contribute otherwise idle cycles to 
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process HTC jobs using backfill VMs. We use Condor as 
the HTC job manager, leveraging its ability to requeue jobs 
that are interrupted during execution. For the evaluation we 
deploy a backfill-enabled version of Nimbus 2.6 on 
FutureGrid . Nimbus runs on a cluster of 16 VMM nodes 
with 2.4 GHz 8-core Intel Xeon processors and 24 GB of 
RAM with 20 GB allocated for user VMs, allowing for a 
total of 128 single-core VMs. The Nimbus workspace 
service node runs on an additional node. The Nimbus 
workspace service listens for incoming on-demand user 
requests for VMs and launches or terminates the VMs on 
the VMM nodes. This node also hosts the user VM image 
repository. In our experiments, we assume that a single 
backfill VM utilizes the entire VMM node (all 8 cores). We 
choose this level of granularity in order to reduce 
virtualization overhead for backfill VMs and avoid 
additional network contention caused by transferring a 
backfill VM image over the network each time it was 
deployed on an idle cloud node; instead the backfill VM 
images were manually copied to the VMM nodes before the 
evaluation began. Backfill VMs are configured as Condor 
worker nodes, preconfigured (at boot) to join our Condor 
master running on our evaluation node. The Condor pool 
does not contain any additional worker nodes. We use an 
additional two nodes (identical to the VMM nodes 
described above) to generate the workload. One node is 
used to host the Condor master and queues the Condor jobs. 
The second node executes the workspace service workload, 
requesting on-demand user VMs. On-demand user requests 
only request a single core. For all of the evaluations 
involving backfill we use the most recent backfill 
termination policy. The most recent backfill termination 
policy first terminates the backfill VMs that have been 
running for the least amount of time. The backfill VMs are 
terminated using clean shutdown. Cleanly shutting down 
backfill VMs enables the Condor workers running inside of 
the backfill VMs to notify the Condor master to reschedule 
its jobs. If clean shutdown is not used with Condor and the 
backfill VM is simply trashed, then Condor relies on 
timeouts before rescheduling jobs, which can take up to two 
hours. (As of the time of this writing Condor has an 
experimental feature to reverse the direction of its pings 
that determine the status of worker nodes, this would 
eliminate the long timeout period and the need to cleanly 
shutdown the backfill VMs. We enabled the feature, 
however, we did not observe the system behaving as 
expected. Interrupted jobs were still experiencing 
prohibitively long delays before being resubmitted to the 
Condor queue. Therefore, we did not use this feature for the 
evaluation, instead we terminate the backfill VMs using 
clean shutdown.)  
For the evaluation we define the following metrics: 
� Exploitation is the percentage of user cycles consumed 
by CPU cores on the VMM nodes in the IaaS cloud that are 
either running an HTC job or running an on-demand user 
VM. Because backfill launches VMs on any idle VMM 
node, regardless of the presence of HTC jobs, it is possible 
for the entire IaaS communication to be running backfill 
VMs on all VMM nodes but still have 0% exploitation. For 
our evaluation backfill VMs must be running Condor jobs 

for them to contribute to the overall exploitation of the 
communication.  
� First queued time is the amount of time that elapses 
between the time when a Condor job is submitted and when 
it first begins executing.  
� Last queued time is the amount of time that elapses 
between the time the Condor job is first submitted and the 
time the Condor job finally begins executing for the last 
time before completing successfully. We note that it is 
possible for backfill VMs to be terminated by the 
deployment of ondemand user VMs, preempting Condor 
jobs executing in backfill VMs, and thus requiring their 
resubmission. While this may happen to a Condor job any 
number of times, it is presumed that the job User VM 
service response time is the amount of time it takes the 
Nimbus service to respond to an on-demand user request, 
i.e., the time between when the service first receives the 
request and the time it determines whether a VM will be 
launched or that the request will be rejected. This time does 
not include the amount of time that it takes to actually boot 
the on-demand user VM or propagate the VM image, only 
the amount of time it takes the  service to determine 
whether or not the request will be handled. If backfill is 
enabled and backfill VMs need to be terminated to deploy 
an on-demand user VM, the user VM service response time 
will include the necessary time to terminate backfill VMs.  
 
A. Workload Traces The workloads we selected are based 
on real workload traces, modified to fit the size of our  
environment. The Condor workload used for the evaluation 
consists of a Condor trace from the Condor Log Analyzer at 
the University of Notre Dame . The workload contains 748 
serial jobs that each sleep for differing amounts of time, 
with a minimum of 1 second, a maximum of 2089 seconds, 
and a standard deviation of 533.2. The Condor trace 
submits 400 jobs to the Condor queue immediately, 
followed by an additional 348 jobs 2573 seconds later. 
Along with the Condor workload we consider an on-
demand IaaS cloud workload that we selected from the 
University of Chicago (UC) Nimbus science cloud [16]. We 
chose this particular workload trace because, despite its lack 
of dynamism, it is generally characteristic of the traces we 
observed on the UC Nimbus cloud. We did not observe the 
UC Nimbus cloud to be highly dynamic over relatively 
short time periods (e.g., a few hours). User requests were 
typically for a static set of instances over a long period of 
time (e.g. 6 VMs for 24 hours). In cases where user requests 
overlapped, the requests often overlapped for extended 
periods of time (e.g. 6 hours). Additionally, we selected this 
trace because it demonstrates the expected behavior of an 
overprovisioned cloud communication that is the focus of 
this work, i.e., it contains many idle VMM nodes available 
to service ondemand requests. Although there are an 
infinite number of possible on-demand and HTC workload 
scenarios that we could have generated for our evaluation, 
many which may have artificially highlighted the 
usefulness of backfill to either the on-demand user 
community or the HTC user community, we instead chose 
to base our evaluation off of two realistic workload traces. 
By choosing two realistic workload traces we are able to 
demonstrate and evaluate the usefulness of backfill to both 
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communities given at least one possible scenario. 
(Furthermore, we selected an on-demand trace from the 
considerably smaller UC Nimbus science cloud then a 
larger and possibly more dynamic cloud provider, such as 
Amazon or the Magellan cloud at Argonne National 
Laboratory , because of the lack of availability of such 
traces at the time of this work.) Because the University of 
Chicago Nimbus cloud only contains a total of 16 cores and 
our evaluation environment contains 128 cores we 
multiplied the workloads by 8 so that 16 individual requests 
for the University of Chicago cloud (16 cores) would be 
128 individual requests for the entire 128 cores in the 
evaluation environment. Thus, an individual request for a 
single core on the University of Chicago cloud is 8 
individual requests, each for a single core, in our evaluation 
environment. The on-demand user workload requests a total 
of 56 individual VMs over the course of the evaluation. 
Finally, we terminate the evaluation shortly after the 
overlapping Condor trace  completes. Both workloads 
submit individual and independent requests; each request is 
for a single core. In the Condor workload the jobs simply 
consist of a program that sleeps for the desired amount of 
time. In the on-demand workload VMs are started and run 
for the appropriate duration. Backfill VMs are capable of 
executing 8 jobs concurrently across the 8 cores in a 
backfill VM, while individual on-demand user requests are 
single-core VMs. RAM is divided evenly among the VMs.  
B. Understanding System Behavior 
To understand the system behavior we compare three 
different scenarios. The first scenario only considers the 
ondemand user workload; the number of cores used in this 
workload is shown in Figure 2. In this case the IaaS cloud 
achieves an average exploitation of 36.36%, shown in 
Figure 5, with a minimum exploitation of 0% and a 
maximum exploitation of 43.75%. The second scenario 
simply involves running the Condor workload on all 16 
VMMs (128 cores) without the on-demand user workload. 
In this case the entire Condor workload completes in 
approximately 84 minutes (5042 seconds), as shown in 
Figure 3. In the third scenario the Condor workload is 
overlaid with the on-demand user workload. The Condor 
workload takes an additional 11 minutes and 45 seconds 
over the case where Condor has exclusive access to the 
resources, completing in approximately 96 minutes (5747 
seconds), as shown in Figure 4. However, the exploitation 
of the cloud communication, shown in Figure 6, increases 
to an average exploitation of 83.82% with a minimum 
exploitation of 0% and a maximum of 100%. As the 
Condor jobs complete (just before 6000 seconds in the 
evaluation) exploitation again drops because the IaaS cloud 
is no longer running Condor jobs in addition to on-demand 
user VMs. The large increase in exploitation is due to the 
fact that the cloud communication is no longer solely 
dedicated to servicing on-demand user VM requests, 
instead the cloud communication is also able to process 
jobs from a Condor workload without compromising its 
ability to service on-demand VM requests. The increase in 
exploitation is dependent upon the amount of work in the 
HTC workload. Naturally, longer and more HTC jobs will 
translate into higher exploitation. While increased 
exploitation certainly benefits the cloud provider, Figure 4 

also demonstrates that it is advantageous to HTC workloads. 
The workload, which originally takes approximately 85 
minutes on the same dedicated hardware (Figure 3), is only 
delayed by 11 minutes and 45 seconds (completing in just 
under 96 minutes) when on-demand user VMs are 
introduced into the system as shown in Figure 4. However, 
presumably the cost of utilizing backfill nodes would be 
lower than utilizing dedicated on-demand user VMs since 
backfill VMs may be reclaimed by the cloud provider 
without warning.  
C. Understanding System Performance To understand how 
the IaaS cloud environment and backfill solution impacts 
on-demand users and HTC users we again consider the 
three different scenarios. The first scenario involves the on-
demand user workload. The second scenario involves 
Condor jobs running on the 16 VMM nodes without 
interruption from on-demand user VMs and the third 
scenario overlays the first two. In Figure 7 we can see that 
the Condor first queued time is smallest when no user VMs 
are present, i.e., if Condor is allowed exclusive access to its 
own hardware for executing jobs. Enabling backfill and 
introducing user VMs causes an increase in the Condor first 
queued time because there are fewer backfill VMs 
processing Condor jobs since on-demand user VMs are also 
running. When backfill is enabled there is a noticeable 
increase in the amount of time that Condor jobs are delayed 
until they finally begin executing before successful 
completion, as seen by the numerous spikes for individual 
Condor jobs in Figure 8 (of which there are a total of 48). 
These 48 jobs actually first begin executing much earlier, as 
seen by the absence of spikes in Figure 7. These jobs are 
delayed because of the arrival of the on-demand VMs, 
which cause the termination of backfill VMs, preempting 
the running Condor jobs. Of the 48 jobs that are preempted 
the average amount of additional time these jobs are 
delayed (before they begin executing for the final time) is 
627 seconds with a standard deviation of 76.78 seconds; the  
minimum amount of extra time that a job is delayed is 273 
seconds and the maximum is 714 seconds. The 48 
preempted jobs spent a total of 22,716 CPU seconds 
processing the Condor workload before they were 
preempted. The entire Condor workload required a total of 
355,245 CPU seconds. Thus, for our experimental traces, 
the use of a backfill-enabled IaaS cloud resulted in an 
additional 6.39% of overhead for the Condor workload. 
Figure 9 demonstrates the impact that backfill has on 
ondemand user requests. When backfill is disabled all on-
demand user requests are handled in 2 seconds or less. 
However, when backfill is enabled the amount of time to 
respond to an ondemand user request can be as high as 13 
seconds, though the majority more closely match the case 
where backfill is disabled. The large delay in response time 
is when the Nimbus service must terminate (via clean 
shutdown) backfill VMs in order to service the on-demand 
user request. Additionally, because the evaluation 
environment consists of 8-core nodes with backfill VMs 
consuming all 8 cores, whenever a backfill VM is 
terminated to free space for an on-demand user VM (even if 
the on-demand user request is only for a single core), the 
remaining cores on the VMM node remain idle and freely 
available for future on-demand user VMs. 
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While this evaluation is based on two real workload traces, 
one can imagine that under some of the possible workloads, 
backfill VMs may be more or less beneficial to IaaS cloud 
providers and HTC users. Certain workloads, environment 
characteristics, and  backfill termination policies will 
undoubtedly lend themselves as more beneficial to one 
community over the other. This is something we will 
consider in future work. However, our backfill solution and 
evaluation demonstrates that when considering a realistic 
on-demand user workload trace and a realistic Condor 
workload trace, a shared communication between IaaS 
cloud providers and an HTC job management system can 
be highly beneficial to both IaaS cloud provider and HTC 
users by increasing the exploitation of the cloud 
communication (thereby decreasing the overall cost) and 
contributing cycles that would otherwise be idle to 
processing HTC jobs  
 

V. RELATED WORK 
Although our work utilizes backfill to achieve high 
exploitation of an IaaS communication, it is different from 
work that uses backfill scheduling to increase the 
exploitation of large supercomputers . Scheduling on 
supercomputers does not typically assume that backfill jobs 
will be preempted by an ondemand 
request, seeking to immediately access the resources, while 
our work assumes this to be the default case. Instead, these 
backfill scheduling algorithms only attempt to backfill 
unused resources with requests that match the available 
slots both in their resource needs as well as their expected 
runtime. There are, however, preemption based backfill 
solutions  that share many similar characteristics to our 
work. The major exception is their focus on queue-based 
supercomputers and our focus on IaaS cloud  
communications. Volunteer computing systems, such as 
BOINC , harvest cycles from idle systems distributed 
across the Internet. Major examples of volunteer 
applications include SETI@Home  and Folding Home . 
These applications are designed to accommodate 
interruptions in service since widely distributed computers, 
operated by a seemingly infinite number of disparate users, 
cannot provide any guarantee of service. In the case of 
volunteer computing systems interruptions in service are 
usually the result of users returning to their systems to do 
work, systems crashing, or systems becoming disconnected 
from the Internet. Much research on volunteer computing 
focuses on the usefulness, efficiency, and failure prediction 
of these volatile environments . Our work focuses on 
providing cycles within an IaaS communication that would 
have otherwise been idle to other processes, such as HTC or 
volunteer computing, where the services may be interrupted 
by the arrival of requests for on-demand VMs. Applications 
that leverage volunteer computing systems would be ideal 
candidates for backfill VMs because of their ability to 
handle unexpected failures in service. we also leverage 
recovery techniques, specifically suspending and resuming 
VMs, to achieve high exploitation of IaaS cloud 
communications. While the goal of maintaining high 
exploitation via introducing different types of leases is the 
same as the work described here, the leases themselves as 
well as the recovery technique used, specifically that of 

suspending and resuming VMs, is different from the focus 
in our work. Instead of using suspend/resume to support 
advanced reservations we leverage a recovery system that 
uses resubmission (Condor) to ensure that high exploitation 
is achieved and no work is lost. 
Another area that shares related themes to our work is spot 
pricing, as exemplified by Amazon . With spot pricing 
users place bids for instances and the cloud provider 
periodically adjusts the price of spot instances, terminating 
the spot instances with bids that fall below the new spot 
price and launching instances that meet or exceed the spot 
price. Our work uses the current demand for on-demand 
user VMs to determine the availability for backfill VMs 
while Amazon bases availability of spot instances on a spot 
price.  
 

VI. FUTURE WORK 
The backfill implementation used in this paper was an 
initial prototype created to demonstrate of the usefulness of 
combining IaaS cloud communication resources with other 
purposes, such as HTC, through backfill VMs. The 
prototype implementation used in this work is publicly 
available on GitHub . The 2.7 release of the Nimbus toolkit 
includes the official release of the backfill implementation. 
In the 2.7 release backfill instances are essentially zero-cost 
spot instances that have a lower priority than on-demand 
instances and spot instances. Therefore, backfill instances 
are preemptible by both on-demand requests and spot 
requests. The future work opens up the opportunity to 
explore different variants of the policies described in 
Section II. For instance, exploring finer granularity with 
which to deploy VMs, optimizing the backfill image 
deployment method, as well as termination policies. 
Another possible area for future work is suspending backfill 
VMs instead of terminating them. Such a solution may be 
ideal for a backfill application that does not leverage 
resubmission as its recovery mechanism. Another set of 
challenges arises if we broaden the definition of the 
perceptible lease, e.g., by removing the assumption that 
only one type of backfill VMs may be used or that only the 
administrator can configure backfill VMs. One simple 
refinement would be for the administrator to define multiple 
backfill VMs and have policies on how backfill resources 
are shared among them (e.g., what percentage of available 
cycles should be devoted to each). However, if users are to 
submit backfill VMs (i.e., the perceptible lease as defined in 
this paper would no longer be “fixed”) some arbitration 
mechanism needs to be defined for deciding between 
various user/instance requests. For example, AWS uses 
auctions to make such decisions (i.e., spot instances) but 
many other mechanisms could also be explored. 
Additionally, we could also consider different types of 
leases, e.g., to provide for the impact of backfill VMs on 
parallel jobs where all processes for a single parallel job 
must be available. Another set of challenges arises out of 
exploring various aspects of resource exploitation, energy 
savings, cost and pricing. An assumption throughout this 
paper has been that civilizing exploitation is advantageous 
because it leads to better resource amortization and thus 
lower costs per computation cycle. This need not 
necessarily be so: green computing techniques allowing 
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providers to power down a proportion of resources may be 
a better option in some cases, and prices obtained by 
auction need not necessarily be sufficient to amortize 
cost.A more thorough model taking into accounts these 
factors would be needed.  

 
VII. CONCLUSIONS 

In this paper we propose a cloud communication that 
combines on-demand allocation of resources with 
opportunistic provisioning of cycles from idle cloud nodes 
to other processes, such as HTC, by deploying backfill 
VMs. We extend the open source Nimbus IaaS toolkit to 
deploy backfill VMs on idle cloud nodes. We evaluate the 
backfill solution using an on-demand user workload and an 
HTC workload. We find backfill VMs contribute to an 
increase of the exploitation of the IaaS cloud 
communication from 37.5% to 100% during a portion of the 
evaluation trace but result in only 6.39% additional 
overhead for processing the HTC workload. Additionally, 
backfill VMs make available cycles that would have 
otherwise been idle to assist in processing HTC jobs. In 
particular, a Condor workload that originally completes in 
approximately 85 minutes on dedicated hardware is only 
delayed by 11 minutes and 45 seconds (completing in just 
under 96 minutes) when ondemand user VMs are 
introduced into the system. 

 
ACKNOWLEDGMENTS 

We would like to thank puram pradeep kuarm  for his help 
and advice  for writing of  this paper and very thankfull to 
our faculty members. 

REFERENCES 
[1] Acharya A, Edjlali G, and Saltz J. “The Utility of Exploiting Idle 

Workstations for Parallel Computation,” SIGMETRICS ’97, pp. 225-
34. 

[2] Amazon Web Services. Amazon.com, Inc. [Online]. Retreived 
December 6, 2010, from: http://www.amazon.com/aws/ 

[3] Anderson D and Fedak G. “The Computational and Storage Potential 
of Volunteer Computing,” CCGRID’06, 2006, p. 73-80. 

[4] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D. 
SETI@home: An Experiment in Public-Resource Computing. 
Communications of the ACM, 45(11), November 2002, 56-61. 

[5] Anderson, D. “BOINC: A System for Public-Resource Computing and 
Storage,” 5th IEEE/ACM Workshop on Grid Computing, Nov. 2004. 

[6] Douglas Thain, David Cieslak, and Nitesh Chawla, "Condor Log 
Analyzer", http://condorlog.cse.nd.edu, 2009. 

[7] Feitelson DG, Rudolph L. Parallel job scheduling: Issues and 
approaches. Lecture Notes in Computer Science: Job Scheduling 
Strategies for Parallel Processing, 949, 1995. 

[8] FutureGrid. [Online]. Retreived December 6, 2010, 
from:http://futuregrid.org/ 

[9] Internet Retailer Magazine. [Online]. Retreived December 6, 
2010,from: http://www.internetretailer.com/top500/list/ 

[10] Science Clouds. [Online]. Retreived December 6, 2010, 
from:http://www.scienceclouds.org/ 

[11] Smith, JE. and Nair, R. Virtual machines: versatile platforms for 
systems and processes. Morgan Kaufmann Publishers, San Francisco, 
CA, USA, 2005. 

[12] Snell Q, Clement M, and Jackson D. Preemption based backfill. In 
Feitelson, Rudolph, and Schwiegelshohn, editors, Job Scheduling 
Strategies for Parallel Processing, pages 24–37. Springer Verlag, 
2002. Lect. Notes Comput. Sci. vol. 2537. 

 
 
 

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4857




