
Civilizing Exploitation of Communication Clouds

Janga Santhosh, Puram Pradeep kumar, Majoju Sridhar kumar

Computer science and Eng. Department,
JNT University,Karimnagar,

Andhra Pradesh, India

Abstract— the advantage of infrastructure -as-a-Service (IaaS)
clouds is providing users on-demand access to resources. to
provide on-demand access, cloud providers must either
significantly overprovision their communication or reject a
large proportion of user requests (in which case the access is
no longer on-demand). At the same time, not all users require
truly on-demand access to resources. Many applications and
workflows are designed for recoverable systems where
interruptions in service are expected. For instance, many
scientists utilize High Throughput Computing (HTC)-enabled
resources, such as Condor, where jobs are dispatched to
available resources and terminated when the resource is no
longer available. We propose a cloud communication that
combines on-demand allocation of resources with
opportunistic provisioning of cycles from idle cloud nodes to
other processes by deploying backfill Virtual Machines (VMs).
We demonstrate that a shared communication between IaaS
cloud providers and an HTC job management system can be
highly beneficial to both the IaaS cloud provider and HTC
users by increasing the exploitation of the cloud
communication and contributing cycles that would otherwise
be idle to processing HTC jobs.

Key words: Cloud computing, Communication-as-a-Service,
High Throughput Computing

I. INTRODUCTION

In the current years, Infrastructure-as-a-Service (IaaS) cloud
computing has emerged as an attractive alternative to the
acquisition and management of physical resources. The on
demand provisioning it supports allows users to elastically
expand and contract the resource base available to them
based on an immediate need – a pattern that enables a quick
turnaround time when dealing with emergencies, working
towards deadlines, or growing an institutional resource base.
This pattern makes it convenient for institutions to
configure private clouds that allow their users a seamless or
near seamless transition to community or commercial
clouds supporting compatible VM images and cloud
interfaces. Such private clouds are typically configured
using open source IaaS implementations such as Nimbus or
Eucalyptus. However, such private cloud installations also
face a exploitation problem. In order to ensure on-demand
availability a provider needs to overprovision: keep a large
proportion of nodes idle so that they can be used to satisfy
an on-demand request, which could come at any time. The
need to keep all these nodes idle leads to low exploitation.
The only way to improve it is to keep fewer nodes idle. But
this means potentially rejecting a higher proportion of
requests – to a point at which a provider no longer provides
on-demand computing. This situation is particularly hard to
accept in the world of scientific computing where the use of

batch schedulers typically ensures high exploitation and
thus much better resource amortization. Thus, potential low
exploitation constitutes a significant potential obstacle to
the adoption of cloud computing in the scientific world. At
the same time, while the on-demand capabilities of IaaS
clouds are ideal for many scientific use cases, there are
others that do not necessarily require on-demand access to
resources. Many systems, specifically volunteer computing
systems such as SETI@Home and Folding@Home , are
capable of taking advantage of resources available
opportunistically and are also preemptible, i.e., designed as
failure resilient systems where interruptions in service can
be handled without compromising the integrity of
computation. One example in the scientific community is
the use of high throughput computing (HTC), as
implemented by e.g., the Condor system where users
employ HTC-enabled resources to process their workloads.
These applications are designed to “scavenge”unused
resource cycles: for example, when a user stops using their
desktop, the screensaver might use the resource to run a
volunteer computing program. The job may then be pre-
empted when the resource becomes unavailable (i.e., the
user is using it again), in which case the job is typically
requeued and rescheduled on another available resource by
the HTC system that manages it. We propose a cloud
communication that combines ondemand allocation of
resources with opportunistic provisioning of cycles from
idle cloud nodes to other processes, such as HTC, by
deploying backfill VMs. Backfill VMs are deployed on idle
cloud nodes and can be configured to perform any desired
function. A backfill VM is terminated when the resource is
needed to satisfy an on-demand request. If we can ensure
that the computation occurring in backfill VMs is resilient
to such sudden termination, the time that would otherwise
be idle can be profitably spent. Furthermore, cycles via
backfill VMs can be provided to users at a lower cost than
on-demand VMs because of the cloud providers ability to
terminate the instances when needed, thus for users that
work with HTC resources and possibly expect such
behavior already, backfill VMs would provide a less
expensive option when moving their workloads to the cloud.
Overall, this design achieves two goals: for cloud providers,
it offers a path to higher utilized clouds; for cloud users, it
offers another type of resource lease, potentially cheaper
than on-demand, non preemptible resource. In our work we
extend the Nimbus toolkit to deploy backfill VMs on idle
Virtual Machine Monitor (VMM) nodes .

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4850

 Nimbus is an open source toolkit for deploying IaaS clouds,
designed with extensibility in mind, which makes it
particularly suitable for projects such as the one described
here. To illustrate how the system works, we configure the
backfill VMs as Condor workers that integrate with a
Condor pool to process HTC jobs. We evaluate the ability
of the system to increase exploitation of the IaaS cloud
communication without sacrificing the ability of the IaaS
cloud to provision resources on-demand. We also evaluate
the ability of the system to contribute cycles that would
otherwise be idle to processing HTC jobs. We find that
during certain portions of our experimental evaluation
backfill VMs contribute to an increase in the exploitation of
the IaaS cloud communication from 37.5% to 100% with
only 6.39% overhead cost for processing the HTC workload.
Additionally, backfill VMs process the entire Condor
workload using what would have otherwise been idle cycles.
The remainder of the paper is organized as follows.

II. MOVE TOWARDS

A compute communication cloud operates by allowing a
user to make leases against its pool of resources; an
ommunication lease makes a resource available to the user
based on set of lease terms defining the availability,
capacity and general conditions of a lease. In our system we
focus on investigating two types of leases:� On-demand,
non-preemptible and flexible leases give a user access to a
resource within interactive time of making the request and
make the resource available for an agreed-upon period of
time. The user can deploy any VM compatible with the
system. � Opportunistic, preemptible and pre-set leases
give a user access to a resource at an indeterminate time and
make the resource available to the user for an indeterminate
amount of time. Further, this resource is pre-defined for the
user by the cloud administrator, i.e.the user cannot provide
his or her own VM. In the rest of the paper we will be
referring to them as ondemand leases and preemptible
leases respectively. We define the following roles in our
system. An on-demand user is a user that requests on-
demand VMs/leases from an IaaS cloud. An on-demand
VM is an IaaS VM that has been provisioned via on on-

demand lease for a specific user. A backfill VM is a VM
that has been deployed automatically by the IaaS cloud
manager on an idle IaaS node using a preemptible lease. An
IaaS cloud dministrator is the person or persons
responsible for configuring and managing the IaaS cloud
resource. An HTC user is a user that submits jobs to an
HTC queue and an HTC worker is a system that process
jobs from the HTC queue. In the context of IaaS clouds,
backfill VMs are generic VMs deployed on IaaS resources
using a preemptible lease that may be configured to
perform any function. Backfill VMs have two major
constraints. First, backfill VMs may be terminated suddenly
in order to free up space for the IaaS cloud manager to
service an on-demand lease. Second, because of the
unpredictable timing of on-demand leases (from any
number of unique users), a variable number of backfill VMs
may be available at any given time. Thus, we assume that
applications executing inside backfill VMs are designed to
handle environments that contain a variable number of
workers that may join or leave the system at any time.
Certain applications are not well suited for these volatile
environments, for example, parallel applications that
require all processes to be present for the duration of the
application’s execution and lack checkpoint/restart
capabilities. An example of a system that is well-suited for
backfill VMs are High Throughput Computing (HTC)
workloads . HTC workloads typically consist of a large
number of jobs that eventually need to be processed. An
assumption of HTC workloads is that they do not have an
immediate deadline and therefore do not need resources to
be available at a particular time. In addition, terminating
individual HTC jobs in the middle of execution and
requeuing them for later execution is an acceptable action
as long as the system is eventually able to process the
workload. This work further assumes that backfill VM
images and deployments are managed by the IaaS cloud
administrator; backfill VMs are not directly managed by
remote cloud users. This work also assumes that the HTC
scheduler is not aware of the IaaS cloud scheduler details
and vice versa. Thus, the scheduling of HTC jobs on HTC
workers (in backfill VMs) is separate from the launching
and terminating of user VMs on the IaaS cloud.
A. Architecture
Figure 1 is a simple example deployment consisting of an
IaaS Nimbus cloud using backfill VMs to run Condor HTC
jobs in order to increase cloud communication exploitation.
In this example the HTC user submits 3 individual tasks to
the Condor master, which is able to schedule 1 task
immediately on a local worker. However, because the
remaining resources in site B’s Condor pool are busy,
Condor leverages the cycles provided by site A’s backfill
VMs to launch the other 2 tasks immediately. Condor is an
ideal candidate for such a deployment because of its
original design as a cycle-scavenger where idle desktop
machines execute jobs until the system’s user returns, after
which the job is either migrated to another system or
prematurely terminated and re-launched on another system.
A backfill deployment could be much more complex then
the example depicted in Figure 1. For instance, backfill
VMs could host a number of different backfill processes in
addition to Condor workers. The Condor workers could

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4851

also be configured to execute jobs from multiple Condor
pools or sites instead of a single pool, as shown in the
figure. IaaS cloud administrators must consider a variety of
different backfill configurations when deploying a backfill
solution on an IaaS cloud. The configuration is influenced
by the characteristics of the underlying physical IaaS
resources, the users of on-demand leases, and the users of
preemptible leases. First, appropriate backfill applications
and workflows should be identified. These applications
should accommodate the constraints discussed previously,
namely, they should be able to utilize a variable number of
nodes that may join or leave the system at any time. Second,
if the IaaS Virtual Machine Monitor (VMM) nodes have
multiple cores, the IaaS cloud administrator must determine
the granularity with which to deploy backfill VMs. One
possible solution is to deploy a single backfill VM for each
core on a VMM node. This approach allows the IaaS cloud
manager to have fine-grained control over VM deployment.
For example, a node with 8 cores may be comprised of 3
user VMs and 5 backfill VMs. However, the disadvantage
of this approach is the increased overhead introduced by
running additional VMs. An alternative solution is to
deploy a single backfill VM per VMM node, utilizing all of
the available cores in the backfill VM. This approach
reduces the virtualization overhead on the VMM node since
only a single backfill VM would be running, however, if the
cloud receives an on-demand user request for a single core
it is possible that the entire backfill VM will need to be
terminated to satisfy the on-demand request. This would
leave the additional VMM cores idle. Alternatively, the
administrator may wish to configure VM deployments
based on allocation of other resources, such as RAM,
instead of (or in addition to) CPU cores. Third, the IaaS
cloud administrator must determine the approximate size of
the backfill deployment, relative to the size of the IaaS
cloud. The administrator may allow the backfill deployment
to utilize all available nodes, however, the administrator
should consider the additional overhead required to
terminate backfill nodes in order to fulfill on-demand user
requests. Depending on the method used to terminate
backfill VMs (e.g. immediately trash the VM or cleanly
shut it down) and the number of backfill nodes being
terminated, this overhead may be significant. Consequently,
IaaS cloud administrators may configure backfill
deployments to only utilize a percentage of idle nodes or
never allow backfill deployments exceed a preset and static
number of idle nodes. Finally, the IaaS cloud administrator
must determine the backfill VM image deployment method.
A fresh backfill VM image could potentially be transferred
from the VM image repository for every backfill VM
deployment (this process is referred to as VM image
propagation and is a typical pattern that remote users expect
for their deployments); however, this introduces network
contention and may slow the deployment of on-demand
user VMs. Another solution is to propagate the backfill
image to the node and cache it on the node, only
propagating it again if the image is updated or is removed
from the cache on the node. A third and simple solution is
to manually place the backfill image on each VMM node.
Thus, when a backfill VM boots, the image is already on
the VMM node and doesn’t require an image to be copied.

This approach reduces network contention (since it is only
performed at select times) and reduces launch time for the
VM (since the backfill image doesn’t need to be copied
across the network). However, any changes to the backfill
image require that the IaaS cloud administrator push it out
to all VMM nodes.
 B. Backfill Termination Policies Backfill VMs are
deployed on idle VMM nodes and terminated whenever
space is needed to service an on-demand lease. However,
the specific backfill VMs that are selected for termination
may impact the services, applications, or workflows
executing inside those VMs. For this reason, ideally the
backfill VM termination policies should consider the
applications and services running inside those VMs as well
as generic factors such as the need for clean shutdown, the
ability of an application to checkpoint/restart, etc. We
discuss below two simple policies that do not integrate such
hints and highlight their shortcomings. One simple policy is
to select the backfill VMs to terminate at random. This
approach ignores a number of factors that could impact the
services and applications running inside backfill VMs. In
particular, if the random backfill VM selected for
termination is the only backfill VM performing a useful
task then its work may be lost while idle backfill VMs
continue running. Another policy is to select the backfill
VM that has been running for the least amount of time. This
policy makes the assumption that the backfill VMs running
the longest also run long-running jobs that have performed
the most work and therefore will lose the most work when
terminated. The intuition behind this policy is that a
workload consisting entirely of short running jobs (e.g. less
then a few minutes) will only be slightly impacted by the
termination of any backfill VM however, workloads that
consist of long running jobs (or a combination of long and
short jobs) will be impacted more by the termination of a
VM that has been deployed for an extended period of time.
In this case all of the VM's work will be lost unless the
application supports checkpoint/restart or migration. It is,
however, possible that the backfill VM running the longest
will not always be the backfill VM with the most work to
lose; without tighter integration between the HTC job
manager and backfill termination policy this information is
not readily accessible. More advanced backfill termination
policies will require “hints” from the IaaS scheduler in the
form of a more complete picture of cloud VM placement or
integration with the applications and services running inside
of the backfill VMs. For instance, if the backfill termination
policy is aware of VM placement on individual VMM
nodes, it may be able to select the fewest number of backfill
VMs for termination in order to satisfy an on-demand lease
instead of blindly terminating backfill VM’s until the
request can be fulfilled. Alternatively, if the backfill
termination policy integrates with the applications and
services running inside of backfill VMs then it may be able
to identify which backfill VMs are performing useful tasks
and avoid terminating those VMs.

III. IMPLEMENTATION

We extend the open source Nimbus cloud computing toolkit,
which provides on-demand access to resources (in the form
of VMs), to support the deployment of preemptible leases

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4852

on idle cloud nodes, also referred to as backfill. We make a
number of simplifying assumptions in our current
implementation. First, the Nimbus administrator must
configure backfill. On-demand cloud users cannot elect to
deploy backfill VMs. Second, the current implementation is
capable of using only a single backfill VM image per VMM
node. Different backfill VM images could be deployed on
different VMM nodes, allowing multiple backfill VM
images to operate within the same IaaS cloud, each
performing different functions. Unless the user specifies the
max number of backfill instances, backfill automatically
attempts to deploy as many backfill VMs as possible when
it is enabled. Initially, we support two termination policies
for selecting backfill VMs for termination in order to fulfill
an on-demand lease. The first policy simply selects a
random backfill VM. The second policy, and the default,
terminates the most recently deployed backfill VM in an
attempt to minimize the amount of work “lost” by the
premature termination of backfill VMs. In future work we
hope to add additional backfill termination policies. Finally,
our backfill implementation cleanly shuts down the backfill
VM. Clean shutdown requires additional time over trashing
the VM, however, performing a clean shutdown notifies
services and applications running inside the backfill VM
that the VM will be terminated, allowing them to respond
appropriately (e.g. notify a central manager to reschedule
currently running jobs).
A. Backfill Configuration Options Only the Nimbus cloud

administrator can configure Backfill. The main
configuration options are specified in a backfill.conf file
on the Nimbus service node, allowing administrators to
easily configure and deploy backfill VMs on Nimbus
clouds. The backfill.conf options include:

� Backfill.disabled: This option specifies whether backfill
is enabled or disabled for the specific cloud. The
default is disabled.

� Max.instances: This option specifies the maximum
number of backfill VMs to launch (assuming there
are enough idle nodes). The default, 0, launches as
many as possible.

� Disk.image: This option specifies the full path to the
backfill VM image on the VMM nodes. This option
assumes that the backfill VM image has already been
pushed out to the VMM node, the Nimbus service does
not automatically transfer it. The image must be in the
same location on every VMM node.

� Memory.MB: This option specifies the amount of
memory (RAM) to use for backfill VMs. The default is
64 MB.

� VCPUs: This option specifies the number of VCPUs to
use for backfill VMs. The default is 1.

� Duration.seconds: This option specifies the amount of
time (in seconds) backfill VMs should run before being
terminated (currently Nimbus doesn’t support
“infinite” length VM deployments). The default is one
week.

� Termination.policy: This option specifies the termination
policy to use when terminating backfill VMs. The
policies currently supported include a “most recent”
policy that first terminates backfill VMs running for the
least amount of time and an “any” policy that simply

terminates a random backfill VM. The default is the
most recent policy.

� Retry.period: This option specifies the duration (in
seconds) that the backfill timer waits in between
attempts to deploy backfill VMs on idle VMM nodes.
The default is 300 seconds.

� Network: This option allows the IaaS cloud administrator
to specify whether the backfill VMs should use the
public network or private.

B. Extensions to the Nimbus Workspace Service We
modified the Nimbus workspace service to support backfill
VM deployments. The workspace service is responsible for
managing the VMM nodes and servicing ondemand user
requests for VMs. In particular, we added a backfill Java
class that contains the majority of the backfill
implementation code. The backfill configuration file is read
when the Nimbus workspace service is started; if backfill is
enabled then the service attempts to launch backfill VMs
untilthe request for resources is denied or the maximum
number of backfill instances is reached (as specified in
backfill.conf). The service also starts a backfill timer that
continually loops, sleeping for the duration specified by
duration.seconds in backfill.conf, and attempts to launch
backfill VMs when it wakes (until the request for resources
is denied or the maximum number of backfill instances
have been launched).
As part of our modifications to the Nimbus workspace
service, we also modified its scheduler to detect any
rejected requests for on-demand user VMs. If we detect a
rejected ondemand user request and backfill is enabled, we
attempt to terminate the appropriate number of backfill
VMs so that the user request can be fulfilled. After the
backfill VMs are terminated we attempt to service the user
request again. If we are not able to service the request, we
continue terminating backfill VMs until we are able to
service the request or all backfill VMs are terminated. If all
backfill VMs are terminated and we are still unable to
service the request, then the request is rejected. We also
modified the scheduler to detect when ondemand users are
terminating VMs. In this case backfill attempts to re-launch
backfill VMs (if backfill is enabled) without waiting for the
backfill timer to expire. In general this is an acceptable
approach, however, there is a design flaw in this initial
implementation. It is possible that all backfill VMs could be
terminated and yet the on-demand request could still be
rejected. In this case the ideal solution would be to
recognize, upfront, that the IaaS cloud is unable to fulfill
the on-demand request and, therefore, the on-demand
request should be rejected immediately before terminating
any backfill VMs. However, recognizing this upfront
requires a complete picture of the VM placement and the
location of individual VM deployments on VMM nodes.

IV. EVALUATION
Our evaluation examines an IaaS backfill deployment from
two perspectives. First, we consider the ability of the
system to increase exploitation of the IaaS cloud
communication without sacrificing the ability of the cloud
to provision resources ondemand. Second, we consider the
ability of the system to contribute otherwise idle cycles to

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4853

process HTC jobs using backfill VMs. We use Condor as
the HTC job manager, leveraging its ability to requeue jobs
that are interrupted during execution. For the evaluation we
deploy a backfill-enabled version of Nimbus 2.6 on
FutureGrid . Nimbus runs on a cluster of 16 VMM nodes
with 2.4 GHz 8-core Intel Xeon processors and 24 GB of
RAM with 20 GB allocated for user VMs, allowing for a
total of 128 single-core VMs. The Nimbus workspace
service node runs on an additional node. The Nimbus
workspace service listens for incoming on-demand user
requests for VMs and launches or terminates the VMs on
the VMM nodes. This node also hosts the user VM image
repository. In our experiments, we assume that a single
backfill VM utilizes the entire VMM node (all 8 cores). We
choose this level of granularity in order to reduce
virtualization overhead for backfill VMs and avoid
additional network contention caused by transferring a
backfill VM image over the network each time it was
deployed on an idle cloud node; instead the backfill VM
images were manually copied to the VMM nodes before the
evaluation began. Backfill VMs are configured as Condor
worker nodes, preconfigured (at boot) to join our Condor
master running on our evaluation node. The Condor pool
does not contain any additional worker nodes. We use an
additional two nodes (identical to the VMM nodes
described above) to generate the workload. One node is
used to host the Condor master and queues the Condor jobs.
The second node executes the workspace service workload,
requesting on-demand user VMs. On-demand user requests
only request a single core. For all of the evaluations
involving backfill we use the most recent backfill
termination policy. The most recent backfill termination
policy first terminates the backfill VMs that have been
running for the least amount of time. The backfill VMs are
terminated using clean shutdown. Cleanly shutting down
backfill VMs enables the Condor workers running inside of
the backfill VMs to notify the Condor master to reschedule
its jobs. If clean shutdown is not used with Condor and the
backfill VM is simply trashed, then Condor relies on
timeouts before rescheduling jobs, which can take up to two
hours. (As of the time of this writing Condor has an
experimental feature to reverse the direction of its pings
that determine the status of worker nodes, this would
eliminate the long timeout period and the need to cleanly
shutdown the backfill VMs. We enabled the feature,
however, we did not observe the system behaving as
expected. Interrupted jobs were still experiencing
prohibitively long delays before being resubmitted to the
Condor queue. Therefore, we did not use this feature for the
evaluation, instead we terminate the backfill VMs using
clean shutdown.)
For the evaluation we define the following metrics:
� Exploitation is the percentage of user cycles consumed
by CPU cores on the VMM nodes in the IaaS cloud that are
either running an HTC job or running an on-demand user
VM. Because backfill launches VMs on any idle VMM
node, regardless of the presence of HTC jobs, it is possible
for the entire IaaS communication to be running backfill
VMs on all VMM nodes but still have 0% exploitation. For
our evaluation backfill VMs must be running Condor jobs

for them to contribute to the overall exploitation of the
communication.
� First queued time is the amount of time that elapses
between the time when a Condor job is submitted and when
it first begins executing.
� Last queued time is the amount of time that elapses
between the time the Condor job is first submitted and the
time the Condor job finally begins executing for the last
time before completing successfully. We note that it is
possible for backfill VMs to be terminated by the
deployment of ondemand user VMs, preempting Condor
jobs executing in backfill VMs, and thus requiring their
resubmission. While this may happen to a Condor job any
number of times, it is presumed that the job User VM
service response time is the amount of time it takes the
Nimbus service to respond to an on-demand user request,
i.e., the time between when the service first receives the
request and the time it determines whether a VM will be
launched or that the request will be rejected. This time does
not include the amount of time that it takes to actually boot
the on-demand user VM or propagate the VM image, only
the amount of time it takes the service to determine
whether or not the request will be handled. If backfill is
enabled and backfill VMs need to be terminated to deploy
an on-demand user VM, the user VM service response time
will include the necessary time to terminate backfill VMs.

A. Workload Traces The workloads we selected are based
on real workload traces, modified to fit the size of our
environment. The Condor workload used for the evaluation
consists of a Condor trace from the Condor Log Analyzer at
the University of Notre Dame . The workload contains 748
serial jobs that each sleep for differing amounts of time,
with a minimum of 1 second, a maximum of 2089 seconds,
and a standard deviation of 533.2. The Condor trace
submits 400 jobs to the Condor queue immediately,
followed by an additional 348 jobs 2573 seconds later.
Along with the Condor workload we consider an on-
demand IaaS cloud workload that we selected from the
University of Chicago (UC) Nimbus science cloud [16]. We
chose this particular workload trace because, despite its lack
of dynamism, it is generally characteristic of the traces we
observed on the UC Nimbus cloud. We did not observe the
UC Nimbus cloud to be highly dynamic over relatively
short time periods (e.g., a few hours). User requests were
typically for a static set of instances over a long period of
time (e.g. 6 VMs for 24 hours). In cases where user requests
overlapped, the requests often overlapped for extended
periods of time (e.g. 6 hours). Additionally, we selected this
trace because it demonstrates the expected behavior of an
overprovisioned cloud communication that is the focus of
this work, i.e., it contains many idle VMM nodes available
to service ondemand requests. Although there are an
infinite number of possible on-demand and HTC workload
scenarios that we could have generated for our evaluation,
many which may have artificially highlighted the
usefulness of backfill to either the on-demand user
community or the HTC user community, we instead chose
to base our evaluation off of two realistic workload traces.
By choosing two realistic workload traces we are able to
demonstrate and evaluate the usefulness of backfill to both

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4854

communities given at least one possible scenario.
(Furthermore, we selected an on-demand trace from the
considerably smaller UC Nimbus science cloud then a
larger and possibly more dynamic cloud provider, such as
Amazon or the Magellan cloud at Argonne National
Laboratory , because of the lack of availability of such
traces at the time of this work.) Because the University of
Chicago Nimbus cloud only contains a total of 16 cores and
our evaluation environment contains 128 cores we
multiplied the workloads by 8 so that 16 individual requests
for the University of Chicago cloud (16 cores) would be
128 individual requests for the entire 128 cores in the
evaluation environment. Thus, an individual request for a
single core on the University of Chicago cloud is 8
individual requests, each for a single core, in our evaluation
environment. The on-demand user workload requests a total
of 56 individual VMs over the course of the evaluation.
Finally, we terminate the evaluation shortly after the
overlapping Condor trace completes. Both workloads
submit individual and independent requests; each request is
for a single core. In the Condor workload the jobs simply
consist of a program that sleeps for the desired amount of
time. In the on-demand workload VMs are started and run
for the appropriate duration. Backfill VMs are capable of
executing 8 jobs concurrently across the 8 cores in a
backfill VM, while individual on-demand user requests are
single-core VMs. RAM is divided evenly among the VMs.
B. Understanding System Behavior
To understand the system behavior we compare three
different scenarios. The first scenario only considers the
ondemand user workload; the number of cores used in this
workload is shown in Figure 2. In this case the IaaS cloud
achieves an average exploitation of 36.36%, shown in
Figure 5, with a minimum exploitation of 0% and a
maximum exploitation of 43.75%. The second scenario
simply involves running the Condor workload on all 16
VMMs (128 cores) without the on-demand user workload.
In this case the entire Condor workload completes in
approximately 84 minutes (5042 seconds), as shown in
Figure 3. In the third scenario the Condor workload is
overlaid with the on-demand user workload. The Condor
workload takes an additional 11 minutes and 45 seconds
over the case where Condor has exclusive access to the
resources, completing in approximately 96 minutes (5747
seconds), as shown in Figure 4. However, the exploitation
of the cloud communication, shown in Figure 6, increases
to an average exploitation of 83.82% with a minimum
exploitation of 0% and a maximum of 100%. As the
Condor jobs complete (just before 6000 seconds in the
evaluation) exploitation again drops because the IaaS cloud
is no longer running Condor jobs in addition to on-demand
user VMs. The large increase in exploitation is due to the
fact that the cloud communication is no longer solely
dedicated to servicing on-demand user VM requests,
instead the cloud communication is also able to process
jobs from a Condor workload without compromising its
ability to service on-demand VM requests. The increase in
exploitation is dependent upon the amount of work in the
HTC workload. Naturally, longer and more HTC jobs will
translate into higher exploitation. While increased
exploitation certainly benefits the cloud provider, Figure 4

also demonstrates that it is advantageous to HTC workloads.
The workload, which originally takes approximately 85
minutes on the same dedicated hardware (Figure 3), is only
delayed by 11 minutes and 45 seconds (completing in just
under 96 minutes) when on-demand user VMs are
introduced into the system as shown in Figure 4. However,
presumably the cost of utilizing backfill nodes would be
lower than utilizing dedicated on-demand user VMs since
backfill VMs may be reclaimed by the cloud provider
without warning.
C. Understanding System Performance To understand how
the IaaS cloud environment and backfill solution impacts
on-demand users and HTC users we again consider the
three different scenarios. The first scenario involves the on-
demand user workload. The second scenario involves
Condor jobs running on the 16 VMM nodes without
interruption from on-demand user VMs and the third
scenario overlays the first two. In Figure 7 we can see that
the Condor first queued time is smallest when no user VMs
are present, i.e., if Condor is allowed exclusive access to its
own hardware for executing jobs. Enabling backfill and
introducing user VMs causes an increase in the Condor first
queued time because there are fewer backfill VMs
processing Condor jobs since on-demand user VMs are also
running. When backfill is enabled there is a noticeable
increase in the amount of time that Condor jobs are delayed
until they finally begin executing before successful
completion, as seen by the numerous spikes for individual
Condor jobs in Figure 8 (of which there are a total of 48).
These 48 jobs actually first begin executing much earlier, as
seen by the absence of spikes in Figure 7. These jobs are
delayed because of the arrival of the on-demand VMs,
which cause the termination of backfill VMs, preempting
the running Condor jobs. Of the 48 jobs that are preempted
the average amount of additional time these jobs are
delayed (before they begin executing for the final time) is
627 seconds with a standard deviation of 76.78 seconds; the
minimum amount of extra time that a job is delayed is 273
seconds and the maximum is 714 seconds. The 48
preempted jobs spent a total of 22,716 CPU seconds
processing the Condor workload before they were
preempted. The entire Condor workload required a total of
355,245 CPU seconds. Thus, for our experimental traces,
the use of a backfill-enabled IaaS cloud resulted in an
additional 6.39% of overhead for the Condor workload.
Figure 9 demonstrates the impact that backfill has on
ondemand user requests. When backfill is disabled all on-
demand user requests are handled in 2 seconds or less.
However, when backfill is enabled the amount of time to
respond to an ondemand user request can be as high as 13
seconds, though the majority more closely match the case
where backfill is disabled. The large delay in response time
is when the Nimbus service must terminate (via clean
shutdown) backfill VMs in order to service the on-demand
user request. Additionally, because the evaluation
environment consists of 8-core nodes with backfill VMs
consuming all 8 cores, whenever a backfill VM is
terminated to free space for an on-demand user VM (even if
the on-demand user request is only for a single core), the
remaining cores on the VMM node remain idle and freely
available for future on-demand user VMs.

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4855

While this evaluation is based on two real workload traces,
one can imagine that under some of the possible workloads,
backfill VMs may be more or less beneficial to IaaS cloud
providers and HTC users. Certain workloads, environment
characteristics, and backfill termination policies will
undoubtedly lend themselves as more beneficial to one
community over the other. This is something we will
consider in future work. However, our backfill solution and
evaluation demonstrates that when considering a realistic
on-demand user workload trace and a realistic Condor
workload trace, a shared communication between IaaS
cloud providers and an HTC job management system can
be highly beneficial to both IaaS cloud provider and HTC
users by increasing the exploitation of the cloud
communication (thereby decreasing the overall cost) and
contributing cycles that would otherwise be idle to
processing HTC jobs

V. RELATED WORK
Although our work utilizes backfill to achieve high
exploitation of an IaaS communication, it is different from
work that uses backfill scheduling to increase the
exploitation of large supercomputers . Scheduling on
supercomputers does not typically assume that backfill jobs
will be preempted by an ondemand
request, seeking to immediately access the resources, while
our work assumes this to be the default case. Instead, these
backfill scheduling algorithms only attempt to backfill
unused resources with requests that match the available
slots both in their resource needs as well as their expected
runtime. There are, however, preemption based backfill
solutions that share many similar characteristics to our
work. The major exception is their focus on queue-based
supercomputers and our focus on IaaS cloud
communications. Volunteer computing systems, such as
BOINC , harvest cycles from idle systems distributed
across the Internet. Major examples of volunteer
applications include SETI@Home and Folding Home .
These applications are designed to accommodate
interruptions in service since widely distributed computers,
operated by a seemingly infinite number of disparate users,
cannot provide any guarantee of service. In the case of
volunteer computing systems interruptions in service are
usually the result of users returning to their systems to do
work, systems crashing, or systems becoming disconnected
from the Internet. Much research on volunteer computing
focuses on the usefulness, efficiency, and failure prediction
of these volatile environments . Our work focuses on
providing cycles within an IaaS communication that would
have otherwise been idle to other processes, such as HTC or
volunteer computing, where the services may be interrupted
by the arrival of requests for on-demand VMs. Applications
that leverage volunteer computing systems would be ideal
candidates for backfill VMs because of their ability to
handle unexpected failures in service. we also leverage
recovery techniques, specifically suspending and resuming
VMs, to achieve high exploitation of IaaS cloud
communications. While the goal of maintaining high
exploitation via introducing different types of leases is the
same as the work described here, the leases themselves as
well as the recovery technique used, specifically that of

suspending and resuming VMs, is different from the focus
in our work. Instead of using suspend/resume to support
advanced reservations we leverage a recovery system that
uses resubmission (Condor) to ensure that high exploitation
is achieved and no work is lost.
Another area that shares related themes to our work is spot
pricing, as exemplified by Amazon . With spot pricing
users place bids for instances and the cloud provider
periodically adjusts the price of spot instances, terminating
the spot instances with bids that fall below the new spot
price and launching instances that meet or exceed the spot
price. Our work uses the current demand for on-demand
user VMs to determine the availability for backfill VMs
while Amazon bases availability of spot instances on a spot
price.

VI. FUTURE WORK
The backfill implementation used in this paper was an
initial prototype created to demonstrate of the usefulness of
combining IaaS cloud communication resources with other
purposes, such as HTC, through backfill VMs. The
prototype implementation used in this work is publicly
available on GitHub . The 2.7 release of the Nimbus toolkit
includes the official release of the backfill implementation.
In the 2.7 release backfill instances are essentially zero-cost
spot instances that have a lower priority than on-demand
instances and spot instances. Therefore, backfill instances
are preemptible by both on-demand requests and spot
requests. The future work opens up the opportunity to
explore different variants of the policies described in
Section II. For instance, exploring finer granularity with
which to deploy VMs, optimizing the backfill image
deployment method, as well as termination policies.
Another possible area for future work is suspending backfill
VMs instead of terminating them. Such a solution may be
ideal for a backfill application that does not leverage
resubmission as its recovery mechanism. Another set of
challenges arises if we broaden the definition of the
perceptible lease, e.g., by removing the assumption that
only one type of backfill VMs may be used or that only the
administrator can configure backfill VMs. One simple
refinement would be for the administrator to define multiple
backfill VMs and have policies on how backfill resources
are shared among them (e.g., what percentage of available
cycles should be devoted to each). However, if users are to
submit backfill VMs (i.e., the perceptible lease as defined in
this paper would no longer be “fixed”) some arbitration
mechanism needs to be defined for deciding between
various user/instance requests. For example, AWS uses
auctions to make such decisions (i.e., spot instances) but
many other mechanisms could also be explored.
Additionally, we could also consider different types of
leases, e.g., to provide for the impact of backfill VMs on
parallel jobs where all processes for a single parallel job
must be available. Another set of challenges arises out of
exploring various aspects of resource exploitation, energy
savings, cost and pricing. An assumption throughout this
paper has been that civilizing exploitation is advantageous
because it leads to better resource amortization and thus
lower costs per computation cycle. This need not
necessarily be so: green computing techniques allowing

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4856

providers to power down a proportion of resources may be
a better option in some cases, and prices obtained by
auction need not necessarily be sufficient to amortize
cost.A more thorough model taking into accounts these
factors would be needed.

VII. CONCLUSIONS

In this paper we propose a cloud communication that
combines on-demand allocation of resources with
opportunistic provisioning of cycles from idle cloud nodes
to other processes, such as HTC, by deploying backfill
VMs. We extend the open source Nimbus IaaS toolkit to
deploy backfill VMs on idle cloud nodes. We evaluate the
backfill solution using an on-demand user workload and an
HTC workload. We find backfill VMs contribute to an
increase of the exploitation of the IaaS cloud
communication from 37.5% to 100% during a portion of the
evaluation trace but result in only 6.39% additional
overhead for processing the HTC workload. Additionally,
backfill VMs make available cycles that would have
otherwise been idle to assist in processing HTC jobs. In
particular, a Condor workload that originally completes in
approximately 85 minutes on dedicated hardware is only
delayed by 11 minutes and 45 seconds (completing in just
under 96 minutes) when ondemand user VMs are
introduced into the system.

ACKNOWLEDGMENTS

We would like to thank puram pradeep kuarm for his help
and advice for writing of this paper and very thankfull to
our faculty members.

REFERENCES
[1] Acharya A, Edjlali G, and Saltz J. “The Utility of Exploiting Idle

Workstations for Parallel Computation,” SIGMETRICS ’97, pp. 225-
34.

[2] Amazon Web Services. Amazon.com, Inc. [Online]. Retreived
December 6, 2010, from: http://www.amazon.com/aws/

[3] Anderson D and Fedak G. “The Computational and Storage Potential
of Volunteer Computing,” CCGRID’06, 2006, p. 73-80.

[4] Anderson DP, Cobb J, Korpela E, Lebofsky M, Werthimer D.
SETI@home: An Experiment in Public-Resource Computing.
Communications of the ACM, 45(11), November 2002, 56-61.

[5] Anderson, D. “BOINC: A System for Public-Resource Computing and
Storage,” 5th IEEE/ACM Workshop on Grid Computing, Nov. 2004.

[6] Douglas Thain, David Cieslak, and Nitesh Chawla, "Condor Log
Analyzer", http://condorlog.cse.nd.edu, 2009.

[7] Feitelson DG, Rudolph L. Parallel job scheduling: Issues and
approaches. Lecture Notes in Computer Science: Job Scheduling
Strategies for Parallel Processing, 949, 1995.

[8] FutureGrid. [Online]. Retreived December 6, 2010,
from:http://futuregrid.org/

[9] Internet Retailer Magazine. [Online]. Retreived December 6,
2010,from: http://www.internetretailer.com/top500/list/

[10] Science Clouds. [Online]. Retreived December 6, 2010,
from:http://www.scienceclouds.org/

[11] Smith, JE. and Nair, R. Virtual machines: versatile platforms for
systems and processes. Morgan Kaufmann Publishers, San Francisco,
CA, USA, 2005.

[12] Snell Q, Clement M, and Jackson D. Preemption based backfill. In
Feitelson, Rudolph, and Schwiegelshohn, editors, Job Scheduling
Strategies for Parallel Processing, pages 24–37. Springer Verlag,
2002. Lect. Notes Comput. Sci. vol. 2537.

Janga Santhosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (4) , 2012,4850-4857

4857

